MATH 220.204, APR 1 2019

1. Let ζ denote the Riemann zeta function, and suppose that $\zeta(z) = 0$ for some $z \in \mathbb{C}$. Prove that $\operatorname{Re}(z) = 1/2$.

This is known as the Riemann Hypothesis. It is still a major unsolved question connecting complex analysis to number theory.

2. Prove that every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

This was known as the Poincare Conjecture but is now a theorem, primarily due to Perelman.

3. Let X be a nonsingular complex projective manifold. Then every Hodge class $\alpha \in \operatorname{Hdg}^k(X) = H^{2k}(X; \mathbb{Q}) \cap H^{k,k}(X)$ is a rational linear combination of algebraic cocycles.

This is the Hodge Conjecture, a major unsolved question in algebraic geometry.

4. Prove that for any compact simple gauge group G, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^4 and has mass gap $\Delta > 0$.

This is the Yang-Mills existence and mass gap problem, a major unsolved question in mathematical physics.

5. Let \mathcal{E} be an elliptic curve over a number field K, and let L(E, s) be the associated L-function. Prove that the rank of E(K) is the order of the zero of L(E, s) at s = 1.

This is a small part of the Birch and Swinnerton–Dyer conjecture, an unsolved question in number theory.

APRIL FOOL'S!

1. Consider the sequence defined by:

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{u_n + 1}{u_n + 2} & \text{for } n \ge 0. \end{cases}$$

Prove that $0 < u_n < \frac{2}{3}$ for every integer $n \ge 0$.

We prove the result by induction on n.

Base Case: n = 0. This is immediate because $0 < \frac{1}{2} < \frac{2}{3}$.

Inductive Step: Suppose that $0 < u_n < \frac{2}{3}$ for some *n*. Since $u_{n+1} = \frac{u_n+1}{u_n+2}$, we

- wish to show that 0 < ^{un+1}/_{un+2} < ²/₃.
 Because u_n > 0, it follows that u_n + 1 > 0 and u_n + 2 > 0, it follows that ^{un+1}/_{un+2} > 0, which proves the first inequality.
 Because u_n < ²/₃, it follows that u_n < 1 and thus

$$u_n < 1$$

 $3u_n + 3 < 2u_n + 4$
 $3(u_n + 1) < 2(u_n + 2)$
 $\frac{u_n + 1}{u_n + 2} < \frac{2}{3}$

as desired. Thus, $0 < \frac{u_n+1}{u_n+2} < \frac{2}{3}$, which completes the induction.

2. Let n be a positive integer, and let \mathbb{Z}_n be the set of integers modulo n. Let

$$S = \{ [x] \in \mathbb{Z}_n : [x^2] = [x] \}$$

(a) Write out the elements of S when n = 15. You may write this as a list $\{[a], [b], [c], \ldots\}.$

When n = 15, we have $S = \{[0], [1], [6], [10]\}$.

(b) Prove that if n is prime, then $S = \{[0], [1]\}$.

For any integer x, we have

$$= [x] \iff x^2 \equiv x \pmod{n}$$
$$\iff n|x^2 - x$$
$$\iff n|x(x-1)$$

Since n is prime, n|x(x-1) if and only if $(n|x \vee n|(x-1))$, which is true if and only if $([x] = [0] \lor [x] = [1])$.

3. Let F_n be the Fibonacci sequence:

$$F_1 = 1$$
, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ if $n > 2$.

Prove that $\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}$.

We use induction on n. The base case is n = 1, which is immediate because $F_1^2 = 1 = F_1 F_2$.

Suppose that $\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}$. We wish to show that $\sum_{k=1}^{n+1} F_k^2 = F_{n+1} F_{n+2}$. We have that

$$\sum_{k=1}^{n+1} F_k^2 = F_{n+1}^2 + \sum_{k=1}^n F_k^2$$
$$= F_{n+1}^2 + F_n F_{n+1}$$
$$= F_{n+1} (F_{n+1} + F_n)$$
$$= F_{n+1} F_{n+2}$$

which completes the induction.

4. Suppose that $f : A \to B$ is a function and $C \subseteq B$. Prove that $f(f^{-1}(C)) = C \cap f(A)$.

First we show that $f(f^{-1}(C)) \subseteq C \cap f(A)$. Suppose that $y \in f(f^{-1}(C))$. Then there is some $x \in f^{-1}(C)$ such that f(x) = y. Since $f^{-1}(C) \subseteq A$, it immediately follows that $f(x) \in f(A)$. Since $x \in f^{-1}(C)$, it immediately follows that $f(x) \in C$. Thus, $f(x) \in C \cap f(A)$. So $y \in C \cap f(A)$.

Suppose that $y \in C \cap f(A)$. Since $y \in f(A)$, it follows that the set $f^{-1}(\{y\})$ is nonempty, so pick any $x \in f^{-1}(\{y\})$. Since $y \in C$, it immediately follows that $x \in f^{-1}(C)$. Thus, $y \in f(f^{-1}(C))$.

5. Let $f : \mathbb{N} \to \mathbb{N}$ be a function defined by

$$\forall n \in \mathbb{N}, \quad f(2n-1) = 3n-2 \qquad f(2n) = 3n-1$$

Prove that $\mathbb{N} \times \mathbb{N}$ is denumerable by showing that the function $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined as $g(m, n) = 3^{m-1} f(n)$ is bijective.

g is injective: Suppose that $a, b, c, d \in \mathbb{N}$ are such that $3^{a-1}f(b) = 3^{c-1}f(d)$. Then, $f(b) = 3^{c-a}f(d)$. Neither f(b) nor f(d) can be a multiple of 3, so it follows that $\underline{a=c}$. Thus, f(b) = f(d). The function f is increasing, because for every n, f(2n-1) = 3n-2 is less than f(2n) = 3n-1 is less than f(2n+1) = 3n+1. Therefore, f is injective and so b=d.

g is surjective: We will prove by strong induction on the natural number N, that N is in the image of the function g. The base case N = 1 is true because g(1, 1) = 1.

We now prove the inductive step. Let N > 1, and suppose that every positive integer less than N is in the image of the function g.

- If $N \equiv 1 \pmod{3}$, then there is some $n \in \mathbb{N}$ such that N = 3n 2, in which case g(0, n) = N.
- If $N \equiv 2 \pmod{3}$, then there is some $n \in \mathbb{N}$ such that N = 3n 1, in which case g(0, n) = N.
- If N ≡ 0 (mod 3), then N/3 is a positive integer and N/3 < N. By the inductive hypothesis, there are positive integer m, n such that g(m, n) = N/3. Then g(m + 1, n) = N.