1. Let ζ denote the Riemann zeta function, and suppose that $\zeta(z)=0$ for some $z \in \mathbb{C}$. Prove that $\operatorname{Re}(z)=1 / 2$.

This is known as the Riemann Hypothesis. It is still a major unsolved question connecting complex analysis to number theory.
2. Prove that every simply connected, closed 3 -manifold is homeomorphic to the 3 -sphere.

This was known as the Poincare Conjecture but is now a theorem, primarily due to Perelman.
3. Let X be a nonsingular complex projective manifold. Then every Hodge class $\alpha \in \operatorname{Hdg}^{k}(X)=H^{2 k}(X ; \mathbb{Q}) \cap H^{k, k}(X)$ is a rational linear combination of algebraic cocycles.

This is the Hodge Conjecture, a major unsolved question in algebraic geometry.
4. Prove that for any compact simple gauge group G, a non-trivial quantum YangMills theory exists on \mathbb{R}^{4} and has mass gap $\Delta>0$.

This is the Yang-Mills existence and mass gap problem, a major unsolved question in mathematical physics.
5. Let \mathcal{E} be an elliptic curve over a number field K, and let $L(E, s)$ be the associated L-function. Prove that the rank of $E(K)$ is the order of the zero of $L(E, s)$ at $s=1$.

This is a small part of the Birch and Swinnerton-Dyer conjecture, an unsolved question in number theory.

APRIL FOOL'S!

1. Consider the sequence defined by:

$$
\left\{\begin{array}{l}
u_{0}=\frac{1}{2} \\
u_{n+1}=\frac{u_{n}+1}{u_{n}+2} \quad \text { for } n \geq 0
\end{array}\right.
$$

Prove that $0<u_{n}<\frac{2}{3}$ for every integer $n \geq 0$.
We prove the result by induction on n.
Base Case: $n=0$. This is immediate because $0<\frac{1}{2}<\frac{2}{3}$.
Inductive Step: Suppose that $0<u_{n}<\frac{2}{3}$ for some n. Since $u_{n+1}=\frac{u_{n}+1}{u_{n}+2}$, we wish to show that $0<\frac{u_{n}+1}{u_{n}+2}<\frac{2}{3}$.

- Because $u_{n}>0$, it follows that $u_{n}+1>0$ and $u_{n}+2>0$, it follows that $\frac{u_{n}+1}{u_{n}+2}>0$, which proves the first inequality.
- Because $u_{n}<\frac{2}{3}$, it follows that $u_{n}<1$ and thus

$$
\begin{gathered}
u_{n}<1 \\
3 u_{n}+3<2 u_{n}+4 \\
3\left(u_{n}+1\right)<2\left(u_{n}+2\right) \\
\frac{u_{n}+1}{u_{n}+2}<\frac{2}{3}
\end{gathered}
$$

as desired.
Thus, $0<\frac{u_{n}+1}{u_{n}+2}<\frac{2}{3}$, which completes the induction.
2. Let n be a positive integer, and let \mathbb{Z}_{n} be the set of integers modulo n. Let

$$
S=\left\{[x] \in \mathbb{Z}_{n}:\left[x^{2}\right]=[x]\right\}
$$

(a) Write out the elements of S when $n=15$. You may write this as a list $\{[a],[b],[c], \ldots\}$.

When $n=15$, we have $S=\{[0],[1],[6],[10]\}$.
(b) Prove that if n is prime, then $S=\{[0],[1]\}$.

For any integer x, we have

$$
\begin{aligned}
=[x] & \Longleftrightarrow x^{2} \equiv x \quad(\bmod n) \\
& \Longleftrightarrow n \mid x^{2}-x \\
& \Longleftrightarrow n \mid x(x-1)
\end{aligned}
$$

Since n is prime, $n \mid x(x-1)$ if and only if $(n|x \vee n|(x-1))$, which is true if and only if $([x]=[0] \vee[x]=[1])$.
3. Let F_{n} be the Fibonacci sequence:

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { if } n>2 .
$$

Prove that $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$.
We use induction on n. The base case is $n=1$, which is immediate because $F_{1}^{2}=1=F_{1} F_{2}$.
Suppose that $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$. We wish to show that $\sum_{k=1}^{n+1} F_{k}^{2}=F_{n+1} F_{n+2}$. We have that

$$
\begin{aligned}
\sum_{k=1}^{n+1} F_{k}^{2} & =F_{n+1}^{2}+\sum_{k=1}^{n} F_{k}^{2} \\
& =F_{n+1}^{2}+F_{n} F_{n+1} \\
& =F_{n+1}\left(F_{n+1}+F_{n}\right) \\
& =F_{n+1} F_{n+2}
\end{aligned}
$$

which completes the induction.
4. Suppose that $f: A \rightarrow B$ is a function and $C \subseteq B$. Prove that $f\left(f^{-1}(C)\right)=$ $C \cap f(A)$.

First we show that $f\left(f^{-1}(C)\right) \subseteq C \cap f(A)$. Suppose that $y \in f\left(f^{-1}(C)\right)$. Then there is some $x \in f^{-1}(C)$ such that $f(x)=y$. Since $f^{-1}(C) \subseteq A$, it immediately follows that $f(x) \in f(A)$. Since $x \in f^{-1}(C)$, it immediately follows that $f(x) \in C$. Thus, $f(x) \in C \cap f(A)$. So $y \in C \cap f(A)$.

Suppose that $y \in C \cap f(A)$. Since $y \in f(A)$, it follows that the set $f^{-1}(\{y\})$ is nonempty, so pick any $x \in f^{-1}(\{y\})$. Since $y \in C$, it immediately follows that $x \in f^{-1}(C)$. Thus, $y \in f\left(f^{-1}(C)\right)$.
5. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by

$$
\forall n \in \mathbb{N}, \quad f(2 n-1)=3 n-2 \quad f(2 n)=3 n-1
$$

Prove that $\mathbb{N} \times \mathbb{N}$ is denumerable by showing that the function $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined as $g(m, n)=3^{m-1} f(n)$ is bijective.
g is injective: Suppose that $a, b, c, d \in \mathbb{N}$ are such that $3^{a-1} f(b)=3^{c-1} f(d)$. Then, $f(b)=3^{c-a} f(d)$. Neither $f(b)$ nor $f(d)$ can be a multiple of 3 , so it follows that $a=c$. Thus, $f(b)=f(d)$. The function f is increasing, because for every $n, f(2 n-1)=3 n-2$ is less than $f(2 n)=3 n-1$ is less than $f(2 n+1)=3 n+1$. Therefore, f is injective and so $b=d$.
g is surjective: We will prove by strong induction on the natural number N, that N is in the image of the function g. The base case $N=1$ is true because $g(1,1)=1$.

We now prove the inductive step. Let $N>1$, and suppose that every positive integer less than N is in the image of the function g.

- If $N \equiv 1(\bmod 3)$, then there is some $n \in \mathbb{N}$ such that $N=3 n-2$, in which case $g(0, n)=N$.
- If $N \equiv 2(\bmod 3)$, then there is some $n \in \mathbb{N}$ such that $N=3 n-1$, in which case $g(0, n)=N$.
- If $N \equiv 0(\bmod 3)$, then $N / 3$ is a positive integer and $N / 3<N$. By the inductive hypothesis, there are positive integer m, n such that $g(m, n)=$ $N / 3$. Then $g(m+1, n)=N$.

